Spastic muscle cells are shorter and stiffer than normal cells.

نویسندگان

  • Jan Fridén
  • Richard L Lieber
چکیده

The mechanical properties of isolated single muscle fiber segments were measured in muscle cells obtained from patients undergoing surgery for correction of flexion contractures secondary to static perinatal encephalopathy (cerebral palsy). "Normal" muscle cells from patients with intact neuromuscular function were also mechanically tested. Fiber segments taken from subjects with spasticity developed passive tension at significantly shorter sarcomere lengths (1.84 +/- 0.05 microm, n = 15) than fibers taken from normal subjects (2.20 +/- 0.04 microm, n = 35). Elastic modulus of the stress-strain relationship in fibers from patients with spasticity (55.00 +/- 6.61 kPa) was almost double that measured in normal fibers (28.25 +/- 3.31 kPa). The fact that these muscle cells from patients with spasticity have a shorter resting sarcomere length and increased modulus compared with normal muscle cells suggests dramatic remodeling of intracellular or extracellular muscle structural components such as titin and collagen. Such changes in muscles of patients with spasticity may have implications for therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material.

The passive mechanical properties of small muscle fiber bundles obtained from surgical patients with spasticity (n = 9) and patients without neuromuscular disorders (n = 21) were measured in order to determine the relative influence of intracellular and extracellular components. For both types of patient, tangent modulus was significantly greater in bundles compared to identical tests performed...

متن کامل

In vivo Evaluations of Fiber Tension and Sarcomere Imaging

INTRODUCTION: Spasticity and contracture commonly occur in neurological disorders. Biomechanical changes of spastic muscle fibers are still not clear and mainly sarcomere length was investigated in spastic fibers in vivo. On the one hand, it was reported that single fibers from spastic muscle of children with cerebral palsy had shorter in vitro length of about 1.84 μm. On the other hand, in viv...

متن کامل

Ulcert Repair by Spray of Epithelial Stem Cells

Purpose: Separation, prolifration of stem cells and repairing of injured parts using these cells. Materials and Methods: This was a Lab-Experimental study. We used 6 male albino rabbits. At first, under general anesthesia 5x5 cm2 full thickness skin from one of the rabbits separated, washed using 70% alcohol and inserted in cold HBSS. Then it was cut into 4-6 mm pieces, washed again and incubat...

متن کامل

بررسی ارتباط اتصالات میواندوتلیال، میان سلول های اندوتلیال و نظم مارپیچی سلولهای عضلانی صاف جدار شرایین توزیع کننده (عضلانی)

Background and Purpose: Conventionally, the architecture of the artery wall is based upon the close-packed smooth muscle cells, endothelial and adventitial cells in both sides of internal elastic lamina (IEL). However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. Recent work raises fundamental questions about the cellular heterogeneity of arterie...

متن کامل

Isolation and optimization of mice skeletal muscle satellite cells using preplating method and culture media substitution

Introduction: Satellite cells are known as the main regenerative cell type in skeletal muscles. Our study established a modified digestion and preplating method for the isolation of slow or weak adherent cells for the enrichment of satellite cells. Low-survival rate of these primary stem cells prompted us to address whether cell culture medium substitution might change cell viability status. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Muscle & nerve

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2003